Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
iScience ; 26(9): 107505, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37664610

RESUMO

The ALS/FTD-linked intronic hexanucleotide repeat expansion in the C9orf72 gene is aberrantly translated in the sense and antisense directions into dipeptide repeat proteins, among which poly proline-arginine (PR) displays the most aggressive neurotoxicity in-vitro and in-vivo. PR partitions to the nucleus when heterologously expressed in neurons and other cell types. We show that by lessening the nuclear accumulation of PR, we can drastically reduce its neurotoxicity. PR strongly accumulates in the nucleolus, a nuclear structure critical in regulating the cell stress response. We determined that, in neurons, PR caused nucleolar stress and increased levels of the transcription factor p53. Downregulating p53 levels also prevented PR-mediated neurotoxicity both in in-vitro and in-vivo models. We investigated if PR could induce the senescence phenotype in neurons. However, we did not observe any indications of such an effect. Instead, we found evidence for the induction of programmed cell death via caspase-3 activation.

2.
bioRxiv ; 2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36824930

RESUMO

The ALS/FTD-linked intronic hexanucleotide repeat expansion in the C9orf72 gene is translated into dipeptide repeat proteins, among which poly-proline-arginine (PR) displays the most aggressive neurotoxicity in-vitro and in-vivo . PR partitions to the nucleus when expressed in neurons and other cell types. Using drosophila and primary rat cortical neurons as model systems, we show that by lessening the nuclear accumulation of PR, we can drastically reduce its neurotoxicity. PR accumulates in the nucleolus, a site of ribosome biogenesis that regulates the cell stress response. We examined the effect of nucleolar PR accumulation and its impact on nucleolar function and determined that PR caused nucleolar stress and increased levels of the transcription factor p53. Downregulating p53 levels, either genetically or by increasing its degradation, also prevented PR-mediated neurotoxic phenotypes both in in-vitro and in-vivo models. We also investigated whether PR could cause the senescence phenotype in neurons but observed none. Instead, we found induction of apoptosis via caspase-3 activation. In summary, we uncovered the central role of nucleolar dysfunction upon PR expression in the context of C9-ALS/FTD.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...